Find the equation of the plane passing through (a,b,c)and parallel to the plane \(\overrightarrow{r}\).(\(\hat i+\hat j+\hat k\))=2.
Any plane parallel to the plane \(\overrightarrow{r} . \hat i+\hat j+\hat k\) =2, is of the form
\(\overrightarrow{r}\).(\(\hat i+\hat j+\hat k\)) = λ...(1)
The plane passes through the point (a,b,c).
Therefore, the position vector r→ of this point is \(\overrightarrow{r}\)=\(a\hat i+b\hat j+c\hat k\)
Therefore, equation(1) becomes
(\(a\hat i+b\hat j+c\hat k\)).(\(\hat i+\hat j+\hat k\))=λ
⇒a+b+c=λ
Substituting λ=a+b+c in equation(1), we obtain
\(\overrightarrow{r}\).(\(\hat i+\hat j+\hat k\))=a+b+c...(2)
This is the vector equation of the required plane.
Substituting\(\overrightarrow{r}\)=\(x\hat i+y\hat j+z\hat k\) in equation(2), we obtain
(\(x\hat i+y\hat j+z\hat k\)).(\(\hat i+\hat j+\hat k\))=a+b+c
⇒x+y+z=a+b+c.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Analyse the characters of William Douglas from ‘Deep Water’ and Mukesh from ‘Lost Spring’ in terms of their determination and will power in pursuing their goals.