Find the equation of the plane passing through (a,b,c)and parallel to the plane \(\overrightarrow{r}\).(\(\hat i+\hat j+\hat k\))=2.
Any plane parallel to the plane \(\overrightarrow{r} . \hat i+\hat j+\hat k\) =2, is of the form
\(\overrightarrow{r}\).(\(\hat i+\hat j+\hat k\)) = λ...(1)
The plane passes through the point (a,b,c).
Therefore, the position vector r→ of this point is \(\overrightarrow{r}\)=\(a\hat i+b\hat j+c\hat k\)
Therefore, equation(1) becomes
(\(a\hat i+b\hat j+c\hat k\)).(\(\hat i+\hat j+\hat k\))=λ
⇒a+b+c=λ
Substituting λ=a+b+c in equation(1), we obtain
\(\overrightarrow{r}\).(\(\hat i+\hat j+\hat k\))=a+b+c...(2)
This is the vector equation of the required plane.
Substituting\(\overrightarrow{r}\)=\(x\hat i+y\hat j+z\hat k\) in equation(2), we obtain
(\(x\hat i+y\hat j+z\hat k\)).(\(\hat i+\hat j+\hat k\))=a+b+c
⇒x+y+z=a+b+c.
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
