The equation of a circle with center \( (h, k) \) and radius \( r \) is:
\[
(x - h)^2 + (y - k)^2 = r^2
\]
Given center \( (2, -3) \) and radius \( r = 5 \):
\[
(x - 2)^2 + (y - (-3))^2 = 5^2
\]
\[
(x - 2)^2 + (y + 3)^2 = 25
\]
Expand:
\[
(x^2 - 4x + 4) + (y^2 + 6y + 9) = 25
\]
\[
x^2 + y^2 - 4x + 6y + 13 - 25 = 0
\]
\[
x^2 + y^2 - 4x + 6y - 12 = 0
\]
Thus, the equation of the circle is:
\[
\boxed{x^2 + y^2 - 4x + 6y - 12 = 0}
\]