The equation of a circle with center at \( (h, 0) \) and radius \( h \) is given by:
\[
(x - h)^2 + y^2 = h^2.
\]
\[
x^2 + y^2 + h^2 - 2hx = h^2
\]
\[
x^2 + y^2 - 2hx = 0
\]
\[
2x + 2y \frac{dy}{dx} - 2h = 0
\]
\[
h = x + y \frac{dy}{dx}
\]
\[
x^2 + y^2 - 2x \left( x + y \frac{dy}{dx} \right) = 0
\]
\[
x^2 + y^2 - 2x^2 - 2xy \frac{dy}{dx} = 0
\]
\[
y^2 - x^2 - 2xy \frac{dy}{dx} = 0
\]Then, equation of the family of circles is:
\[
2xy \frac{dy}{dx} = y^2 - x^2.
\]