Question:

Find the derivative of \( \sec^{-1}(x) \): \[ \frac{d}{dx} \left( \sec^{-1}(x) \right) \]

Show Hint

The derivative of \( \sec^{-1}(x) \) is \( \frac{1}{|x|\sqrt{x^2 - 1}} \). Remember to use the absolute value of \( x \) to account for the domain restrictions of the inverse secant function.
  • \( \frac{1}{\sqrt{1 - x^2}} \)
  • \( \frac{x}{\sqrt{x^2 - 1}} \)
  • \( \frac{1}{\sqrt{1 + x^2}} \)
  • \( \frac{-x}{\sqrt{x^2 - 1}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To differentiate \( \sec^{-1}(x) \), we use the standard formula for the derivative of the inverse secant function: \[ \frac{d}{dx} \left( \sec^{-1}(x) \right) = \frac{1}{|x|\sqrt{x^2 - 1}} \] Thus, the derivative is: \[ \frac{x}{\sqrt{x^2 - 1}} \] Therefore, the correct option is: \[ \boxed{\frac{x}{\sqrt{x^2 - 1}}} \]
Was this answer helpful?
0
0