Let $A$ be the area of the triangle when one of its equal sides is $x$ so that the base
$= 18 - x - x = 18 - 2x$,
$\frac{9}{2} < x < 9$
($\because x > 0, 18 - 2x > 0$ and $x + x > 18 - 2x$ as the sum of two sides > third side)
$A = \sqrt{ 9 \left(9 -x\right) \left(9 - x \right)\left[ 9 - \left( 1 8 - 2x\right)\right]}$,
$\frac{9}{2} < x < 9$ (Heron's method)
$\Rightarrow A = 3\left(9-x\right)\sqrt{2x - 9}$,
$x\in \left(\frac{9}{2}, 9\right)$
$\therefore \frac{dA}{dx} = 3\left( \left(9-x\right)\cdot \frac{1}{2\sqrt{2x-9}}\cdot2+\sqrt{2x - 9}\left(-1\right)\right)$
$= 3\left(\frac{9-x-2x+9}{\sqrt{2x-9}} \right)$
$ = \frac{9\left(6-x\right)}{\sqrt{2x-9}}$, $x\in \left(\frac{9}{2}, 9\right)$
Now, $\frac{dA}{dx} = 0$
$\Rightarrow \frac{9\left(6-x\right)}{\sqrt{2x-9}} = 0$
$\Rightarrow 6 - x = 0$
$\Rightarrow x = 6$
When $x < 6$ slightly, then $\frac{dA}{dx} = \frac{+ve\left(+ ve\right)}{+ve} = +ve$ and
when $x > 6$ slightly, then $\frac{dA}{dx} = \frac{+ve\left(- ve\right)}{+ve} =- ve$
$\Rightarrow \frac{dA}{dx}$ changes sign from $+ve$ to $-ve$ as we move from shghly $< 6$ to shghtly $> 6$ through $6$
$\Rightarrow$ A has a local maximum at $x = 6$.
But, $A = 3\left(9-x\right) \sqrt{2x - 9}$ is continuous in $\left(\frac{9}{2}, 9\right)$ and has only one extremum (at $x = 6$), therefore, $x = 6$ is the point of absolute maximum of $A$.
Hence, $A$ is maximum when $x = 6$ and maximum value of $A = 3\left(9 - 6\right)\sqrt{2 \times 6 - 9} = 9\sqrt{3}$
(Note that when $A$ is maximum, the base of the triangle $= 1 8 - 2 \times 6 = 6$ i.e. the triangle is equilateral)