The angle Q between the lines with direction cosines, a,b,c and b-c, c-a, a-b, is given by,
cosQ=|\(\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^2+b^2+c^2}+\sqrt{(b-c)^2+(c-a)^2+(a-b)^2}}\)|
⇒cosQ=0
⇒Q=cos-1=0
⇒Q=90°
Thus, the angle between the lines is 90°.
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
