The angle Q between the lines with direction cosines, a,b,c and b-c, c-a, a-b, is given by,
cosQ=|\(\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^2+b^2+c^2}+\sqrt{(b-c)^2+(c-a)^2+(a-b)^2}}\)|
⇒cosQ=0
⇒Q=cos-1=0
⇒Q=90°
Thus, the angle between the lines is 90°.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
| Particulars | 31-03-2024 (₹) | 31-03-2023 (₹) |
|---|---|---|
| Equity Share Capital | 12,00,000 | 8,00,000 |
| 11% Debentures | 3,00,000 | 4,00,000 |
| Securities Premium | 1,40,000 | 1,00,000 |