
(a) Principal (P) = Rs \(1200\)
Rate (R) = \(12 \%\) p.a. 
Time (T) = \(3\) years
\(S.I = \frac{P\times R\times T}{100}\)
= \(\frac{1200\times 12\times3}{100}\)
= Rs \(432\)
Amount = \(P + S.I\).
= \(1200 + 432\)
= Rs \(1632\)
(b) P = Rs \(7500\), R = \(5\%\) p.a.
T = \(3\) years
\(S.I = \frac{P\times R\times T}{100}\)
\(=\frac{7500\times5\times3}{100}\)
= Rs \(1125\)
Amount = \(7500 + 1125\)
= Rs \(8625\)
Read more: Simple Interest Formula
Using laws of exponents, simplify and write the answer in exponential form: 
(i) 32 × 34 × 38 (ii) 615 ÷ 610 (iii) a3 × a2 (iv) 7x×72 (v) (52) ÷ 53 (vi) 25 × 55 (vii) a4 × b4 (viii) (34)3(ix) (220 ÷ 215)×23 (x) 8t ÷ 82
