1. Find the derivative: \[ f'(x) = \frac{1}{2} - \frac{2}{x^2}. \]
2. Critical points: Set \( f'(x) = 0 \): \[ \frac{1}{2} - \frac{2}{x^2} = 0 \quad \Rightarrow \quad \frac{2}{x^2} = \frac{1}{2} \quad \Rightarrow \quad x^2 = 4 \quad \Rightarrow \quad x = 2. \] (Only \( x = 2 \) is in \( [1, 2] \).)
3. Evaluate \( f(x) \) at endpoints and critical point: - At \( x = 1 \): \[ f(1) = \frac{1}{2} + \frac{2}{1} = \frac{1}{2} + 2 = 2.5. \] - At \( x = 2 \): \[ f(2) = \frac{2}{2} + \frac{2}{2} = 1 + 1 = 2. \]
4. Conclusion: The absolute maximum value is \( 2.5 \) at \( x = 1 \), and the absolute minimum value is \( 2 \) at \( x = 2 \).
Final Answer: \[ {Absolute maximum: } 2.5 \, ( {at } x = 1), \quad {Absolute minimum: } 2 \, ( {at } x = 2). \]
Show that \( R \) is an equivalence relation. Also, write the equivalence class \([2]\).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |