Step 1: The given integral can be written as: \[ I = \int e^x \left( \frac{x}{\sqrt{1+x^2}} + \frac{1}{(1+x^2)^{\frac{3}{2}}} \right) dx \] Let: \[ f(x) = \frac{x}{\sqrt{1+x^2}} \] Step 2: Now, calculate the derivative of \( f(x) \): \[ f'(x) = \frac{\sqrt{1+x^2} - \frac{x \cdot x}{\sqrt{1+x^2}}}{1+x^2} = \frac{\sqrt{1+x^2} - \frac{x^2}{\sqrt{1+x^2}}}{1+x^2} \] Simplify the numerator: \[ f'(x) = \frac{\sqrt{1+x^2} - \frac{x^2}{\sqrt{1+x^2}}}{1+x^2} = \frac{1}{(1+x^2)^{\frac{3}{2}}} \] Thus, the integral becomes: \[ I = \int e^x \left( f(x) + f'(x) \right) dx \] Step 3: Using the standard result: \[ \int e^x \left( f(x) + f'(x) \right) dx = e^x f(x) + C \] Substitute \( f(x) = \frac{x}{\sqrt{1+x^2}} \): \[ I = e^x \frac{x}{\sqrt{1+x^2}} + C \] Final Answer: \[ \boxed{I = e^x \frac{x}{\sqrt{1+x^2}} + C} \] Explanation: 1. Splitting the Integral: The given integral is split into terms containing \( \frac{x}{\sqrt{1+x^2}} \) and \( \frac{1}{(1+x^2)^{\frac{3}{2}}} \).
2. Defining \( f(x) \): The function \( f(x) \) is chosen as \( \frac{x}{\sqrt{1+x^2}} \) because its derivative results in the second term, \( \frac{1}{(1+x^2)^{\frac{3}{2}}} \).
3. Applying the Formula: The integral formula for \( \int e^x (f(x) + f'(x)) dx = e^x f(x) + C \) is directly applied.
4. Substitution: Finally, substituting \( f(x) \) into the formula gives the result.
An instructor at the astronomical centre shows three among the brightest stars in a particular constellation. Assume that the telescope is located at \( O(0,0,0) \) and the three stars have their locations at points \( D, A, \) and \( V \), having position vectors: \[ 2\hat{i} + 3\hat{j} + 4\hat{k}, \quad 7\hat{i} + 5\hat{j} + 8\hat{k}, \quad -3\hat{i} + 7\hat{j} + 11\hat{k} \] respectively. Based on the above information, answer the following questions: