Given:
\[
(\sin y)^x = (\cos x)^y.
\]
Take natural logarithm on both sides:
\[
x \log(\sin y) = y \log(\cos x).
\]
Differentiate both sides with respect to \(x\), treating \(y\) as a function of \(x\):
\[
\frac{d}{dx} \left( x \log(\sin y) \right) = \frac{d}{dx} \left( y \log(\cos x) \right).
\]
Using product rule on both sides:
\[
\log(\sin y) + x \cdot \frac{1}{\sin y} \cdot \cos y \cdot \frac{dy}{dx} = \frac{dy}{dx} \cdot \log(\cos x) + y \cdot \frac{1}{\cos x} \cdot (-\sin x).
\]
Rewrite:
\[
\log(\sin y) + x \cot y \frac{dy}{dx} = \frac{dy}{dx} \log(\cos x) - y \tan x.
\]
Group \(\frac{dy}{dx}\) terms on one side:
\[
x \cot y \frac{dy}{dx} - \frac{dy}{dx} \log(\cos x) = - y \tan x - \log(\sin y).
\]
Factor \(\frac{dy}{dx}\):
\[
\frac{dy}{dx} \left( x \cot y - \log(\cos x) \right) = - y \tan x - \log(\sin y).
\]
Therefore,
\[
\boxed{
\frac{dy}{dx} = \frac{ - y \tan x - \log(\sin y) }{ x \cot y - \log(\cos x) }.
}
\]