Rewrite:
\[
y = (\sin x^2)^{1/2}.
\]
Using the chain rule:
\[
\frac{dy}{dx} = \frac{1}{2} (\sin x^2)^{-1/2} \cdot \frac{d}{dx} (\sin x^2).
\]
Differentiate inside:
\[
\frac{d}{dx} (\sin x^2) = \cos x^2 \cdot \frac{d}{dx} (x^2) = \cos x^2 \cdot 2x.
\]
Therefore,
\[
\frac{dy}{dx} = \frac{1}{2} (\sin x^2)^{-1/2} \cdot 2x \cos x^2 = \frac{x \cos x^2}{\sqrt{\sin x^2}}.
\]