We are given:
\[
\frac{d}{dx} \log (\sec x + \tan x)
\]
Using the chain rule:
\[
\frac{d}{dx} \log f(x) = \frac{1}{f(x)} \cdot f'(x)
\]
Let \( f(x) = \sec x + \tan x \). Then:
\[
f'(x) = \frac{d}{dx} (\sec x + \tan x) = \sec x \tan x + \sec^2 x
\]
So:
\[
\frac{d}{dx} \log (\sec x + \tan x) = \frac{1}{\sec x + \tan x} \cdot (\sec x \tan x + \sec^2 x)
\]
But notice:
\[
\frac{d}{dx} \log (\sec x + \tan x) = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} = \frac{d}{dx} (\log (\sec x + \tan x))
\]
This simplifies to:
\[
\frac{d}{dx} \log (\sec x + \tan x) = \frac{d}{dx} [\log(\sec x + \tan x)] = \boxed{ \frac{1}{\sec x + \tan x} \cdot (\sec x \tan x + \sec^2 x) }
\]
But none of the options contain this expression — only (A) is a partial derivative rule form.
However, since:
\[
\frac{d}{dx} \log(\sec x + \tan x) = \frac{1}{\sec x + \tan x} \cdot (\sec x \tan x + \sec^2 x)
\]
So the correct answer isn't just (A) — it should be the full expression.
Correction: The correct answer based on derivative computation is:
\[
\frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x}
\]
But none of the given options match this.
So either the options are incorrect or incomplete.