We differentiate term-by-term:
\[
\frac{d}{dx} \left( \sec^{-1} x \right) = \frac{1}{|x| \sqrt{x^2 - 1}}, \quad x \in (-\infty, -1] \cup [1, \infty)
\]
\[
\frac{d}{dx} \left( \csc^{-1} x \right) = -\frac{1}{|x| \sqrt{x^2 - 1}}, \quad x \in (-\infty, -1] \cup [1, \infty)
\]
Adding both:
\[
\frac{d}{dx} \left( \sec^{-1} x + \csc^{-1} x \right) = \frac{1}{|x| \sqrt{x^2 - 1}} - \frac{1}{|x| \sqrt{x^2 - 1}} = 0
\]
\[
\therefore \frac{d}{dx} \left( \sec^{-1} x + \csc^{-1} x \right) = 0
\]