Find adjoint of each of the matrices. \(\begin{bmatrix}1&2\\3&4\end{bmatrix}\)
Let A=\(\begin{bmatrix}1&2\\3&4\end{bmatrix}\)
we have A11=4, A12=-3, A21=-2, A22=1
so adj A=\(\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}\)
=\(\begin{bmatrix}4&-2\\-3&1\end{bmatrix}\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Answer the following questions with respect to the sex determining mechanism observed in honey bee.