Figure shows two parallel plates (upper plate at \( x = b \) and lower one at \( x = -b \) of length L (aligned in \( z \)-direction and infinite width (in \( y \)-direction, normal to the plane of the figure)). Two immiscible, incompressible liquids are flowing steadily in the \( z \)-direction through the thin passage between the plates under the influence of a horizontal pressure gradient \( \left( \frac{P_0 - P_L}{L} \right) \). During the flow, the passage is always half-filled with denser fluid I (viscosity \( \mu_1 \)) at the bottom and rest is occupied by lighter fluid II (viscosity \( \mu_2 \)). Considering exactly in between the fluids and no instabilities in the flow, the shear stress \( \tau_{xz} \) is expressed as:
\[ \tau_{xz} = \frac{(P_0 - P_L) b}{L} \left( \frac{x}{b} - \frac{1}{2} \right) \left( \frac{\mu_1' - \mu_2'}{\mu_1' + \mu_2'} \right) \] Which one of the following options correctly identifies the location of the point having maximum velocity of the flow?
Consider two identical tanks with a bottom hole of diameter \( d \). One tank is filled with water and the other tank is filled with engine oil. The height of the fluid column \( h \) is the same in both cases. The fluid exit velocity in the two tanks are \( V_1 \) and \( V_2 \). Neglecting all losses, which one of the following options is correct?

A pitot tube connected to a U-tube mercury manometer measures the speed of air flowing in the wind tunnel as shown in the figure below. The density of air is 1.23 kg m\(^{-3}\) while the density of water is 1000 kg m\(^{-3}\). For the manometer reading of \( h = 30 \) mm of mercury, the speed of air in the wind tunnel is _________ m s\(^{-1}\) (rounded off to 1 decimal place).

Consider a velocity field \( \vec{V} = 3z \hat{i} + 0 \hat{j} + Cx \hat{k} \), where \( C \) is a constant. If the flow is irrotational, the value of \( C \) is (rounded off to 1 decimal place).
A pitot tube connected to a U-tube mercury manometer measures the speed of air flowing in the wind tunnel as shown in the figure below. The density of air is 1.23 kg m\(^{-3}\) while the density of water is 1000 kg m\(^{-3}\). For the manometer reading of \( h = 30 \) mm of mercury, the speed of air in the wind tunnel is _________ m s\(^{-1}\) (rounded off to 1 decimal place). 
Potato slices weighing 50 kg is dried from 60% moisture content (wet basis) to 5% moisture content (dry basis). The amount of dried potato slices obtained (in kg) is ............ (Answer in integer)
Two Carnot heat engines (E1 and E2) are operating in series as shown in the figure. Engine E1 receives heat from a reservoir at \(T_H = 1600 \, {K}\) and does work \(W_1\). Engine E2 receives heat from an intermediate reservoir at \(T\), does work \(W_2\), and rejects heat to a reservoir at \(T_L = 400 \, {K}\). Both the engines have identical thermal efficiencies. The temperature \(T\) (in K) of the intermediate reservoir is ........ (answer in integer). 
A bar of length \( L = 1 \, {m} \) is fixed at one end. Before heating its free end has a gap of \( \delta = 0.1 \, {mm} \) from a rigid wall as shown in the figure. Now the bar is heated resulting in a uniform temperature rise of \( 10^\circ {C} \). The coefficient of linear thermal expansion of the material is \( 20 \times 10^{-6} / \degree C \) and the Young’s modulus of elasticity is 100 GPa. Assume that the material properties do not change with temperature.
The magnitude of the resulting axial stress on the bar is .......... MPa (in integer). 
A massless cantilever beam, with a tip mass \( m \) of 10 kg, is modeled as an equivalent spring-mass system as shown in the figure. The beam is of length \( L = 1 \, {m} \), with a circular cross-section of diameter \( d = 20 \, {mm} \). The Young’s modulus of the beam material is 200 GPa.
The natural frequency of the spring-mass system is ............ Hz (rounded off to two decimal places).
A simply-supported beam has a circular cross-section with a diameter of 20 mm, area of 314.2 mm\(^2\), area moment of inertia of 7854 mm\(^4\), and a length \( L \) of 4 m. A point load \( P = 100 \, {N} \) acts at the center and an axial load \( Q = 20 \, {kN} \) acts through the centroidal axis as shown in the figure.
The magnitude of the offset between the neutral axis and the centroidal axis, at \( L/2 \) from the left, is ............ mm (rounded off to one decimal place).