Concept:
In a meter bridge at balance condition:
\[
\frac{R_1}{R_2}=\frac{l}{100-l}
\]
where \(l\) is the balance length in cm from the left end.
Step 1: Use the initial balance condition.
Given \(l=40\ \text{cm}\):
\[
\frac{R_1}{R_2}=\frac{40}{60}=\frac{2}{3}
\]
\[
R_1=\frac{2}{3}R_2 \qquad \cdots (1)
\]
Step 2: Find effective resistance when \(16\,\Omega\) is connected in parallel with \(R_2\).
\[
R_2'=\frac{16R_2}{16+R_2}
\]
Step 3: Apply the new balance condition.
New balance length \(=50\ \text{cm}\):
\[
\frac{R_1}{R_2'}=\frac{50}{50}=1
\]
\[
R_1=R_2' \qquad \cdots (2)
\]
Step 4: Substitute from equations (1) and (2).
\[
\frac{2}{3}R_2=\frac{16R_2}{16+R_2}
\]
Cancel \(R_2\neq0\):
\[
\frac{2}{3}=\frac{16}{16+R_2}
\]
\[
2(16+R_2)=48
\Rightarrow 32+2R_2=48
\Rightarrow R_2=8\,\Omega
\]
Step 5: Find \(R_1\).
\[
R_1=\frac{2}{3}\times 8=\frac{16}{3}\,\Omega
\]
\[
\boxed{R_1=\frac{16}{3}\,\Omega,\quad R_2=8\,\Omega}
\]