Step 1: Condition for continuity at \(x=0\).
For \(f(x)\) to be continuous at \(x=0\),
\[
f(0)=\lim_{x\to 0} f(x)
\]
Step 2: Evaluate the limit.
\[
\lim_{x\to 0}\left(\frac{1}{x}-\frac{2}{e^{2x}-1}\right)
\]
Use the standard expansion:
\[
e^{2x}-1 = 2x + 2x^2 + \cdots
\]
\[
\frac{2}{e^{2x}-1}
= \frac{2}{2x(1+x+\cdots)}
= \frac{1}{x}(1-x+\cdots)
\]
Step 3: Substitute into the expression.
\[
\frac{1}{x}-\left(\frac{1}{x}-1+\cdots\right)
= 1
\]
Step 4: Define \(f(0)\).
\[
f(0)=1
\]
Hence, the function can be made continuous at \(x=0\) by defining
\[
\boxed{f(0)=1}
\]