Step 1: Write the recurrence relation.
We are given:
\[
f(1) = 1, \qquad f(x) = 2x + f(x-1), \ \text{for } x \geq 2.
\]
Step 2: Expand the recurrence for first few terms.
\begin{align*}
f(2) &= 2..... 2 + f(1) = 4 + 1 = 5,
f(3) &= 2..... 3 + f(2) = 6 + 5 = 11,
f(4) &= 2..... 4 + f(3) = 8 + 11 = 19,
f(5) &= 2..... 5 + f(4) = 10 + 19 = 29.
\end{align*}
So the sequence goes: $f(1)=1, f(2)=5, f(3)=11, f(4)=19, f(5)=29,\dots$
Step 3: Generalize the recurrence.
We can unfold the recurrence:
\begin{align*}
f(x) &= f(x-1) + 2x,
&= f(x-2) + 2(x-1) + 2x,
&= f(x-3) + 2(x-2) + 2(x-1) + 2x,
& \;\vdots
&= f(1) + 2..... 2 + 2..... 3 + .....s + 2x.
\end{align*}
Since $f(1)=1$, we get
\[
f(x) = 1 + 2\sum_{k=2}^{x} k.
\]
Step 4: Simplify the summation.
\begin{align*}
\sum_{k=2}^{x} k &= \left(\sum_{k=1}^{x} k\right) - 1
&= \frac{x(x+1)}{2} - 1.
\end{align*}
So,
\begin{align*}
f(x) &= 1 + 2\left(\frac{x(x+1)}{2} - 1\right)
&= 1 + (x(x+1) - 2)
&= x^2 + x - 1.
\end{align*}
Step 5: Compute $f(31)$.
\begin{align*}
f(31) &= 31^2 + 31 - 1
&= 961 + 30
&= 991.
\end{align*}
\fbox{\parbox{0.97\linewidth}{
\centering $f(31) = \boxed{991}$
}}