\(i^{9} + i^{19}=i^{4×2+1}+i^{4×4+1}\)
\(=(i^{4})^{2} ×i +(i^{4})^{4} × i^{3}\)
\(=1×i +1×(-i)\)
\(=0\)
Solve for \( x \):
\( \log_{10}(x^2) = 2 \).
Let \( K \) be an algebraically closed field containing a finite field \( F \). Let \( L \) be the subfield of \( K \) consisting of elements of \( K \) that are algebraic over \( F \).
Consider the following statements:
S1: \( L \) is algebraically closed.
S2: \( L \) is infinite.
Then, which one of the following is correct?
Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that i² = 1. So, for every equation which does not have a real solution we can use i = -1.
Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b and c are the real numbers.