As the police officer was found guilty of embezzlement, he was _________ dismissed from the service in accordance with the Service Rules. Select the most appropriate option to complete the above sentence.
List-I (Words) | List-II (Definitions) |
(A) Theocracy | (I) One who keeps drugs for sale and puts up prescriptions |
(B) Megalomania | (II) One who collects and studies objects or artistic works from the distant past |
(C) Apothecary | (III) A government by divine guidance or religious leaders |
(D) Antiquarian | (IV) A morbid delusion of one’s power, importance or godliness |
Let \( (X, Y)^T \) follow a bivariate normal distribution with \[ E(X) = 2, \, E(Y) = 3, \, {Var}(X) = 16, \, {Var}(Y) = 25, \, {Cov}(X, Y) = 14. \] Then \[ 2\pi \left( \Pr(X>2, Y>3) - \frac{1}{4} \right) \] equals _________ (rounded off to two decimal places).
Let \( X_1, X_2 \) be a random sample from a population having probability density function
\[ f_{\theta}(x) = \begin{cases} e^{(x-\theta)} & \text{if } -\infty < x \leq \theta, \\ 0 & \text{otherwise}, \end{cases} \] where \( \theta \in \mathbb{R} \) is an unknown parameter. Consider testing \( H_0: \theta \geq 0 \) against \( H_1: \theta < 0 \) at level \( \alpha = 0.09 \). Let \( \beta(\theta) \) denote the power function of a uniformly most powerful test. Then \( \beta(\log_e 0.36) \) equals ________ (rounded off to two decimal places).
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).