Rewrite the expression:
\[
\frac{1}{\sin x} - \frac{1}{x}
= \frac{x - \sin x}{x \sin x}.
\]
Using the standard limit expansion:
\[
\sin x = x - \frac{x^3}{6} + O(x^5),
\]
\[
x - \sin x = \frac{x^3}{6} + O(x^5).
\]
Thus,
\[
\frac{x - \sin x}{x \sin x}
\approx \frac{\frac{x^3}{6}}{x^2}
= \frac{x}{6} \to 0.
\]
Hence the limit is approximately \(0\).
Rounded to nearest integer, the answer is \(0\).