Step 1: Understanding the Limit
We need to evaluate the limit:
\[
L = \lim_{x \to 0} \frac{35^x - 7^x - 5^x + 1}{(e^x - e^{-x}) \ln(1 - 3x)}.
\]
Step 2: Approximate the Numerator
Using the first-order approximation \( a^x - 1 \approx x \ln a \) for small \( x \), we get:
\[
35^x - 1 \approx x \ln 35, \quad 7^x - 1 \approx x \ln 7, \quad 5^x - 1 \approx x \ln 5.
\]
Thus, the numerator simplifies as:
\[
35^x - 7^x - 5^x + 1 \approx x \ln 35 - x \ln 7 - x \ln 5 = x (\ln 35 - \ln 7 - \ln 5).
\]
Since \( \ln 35 = \ln (7 \times 5) = \ln 7 + \ln 5 \), we conclude:
\[
\ln 35 - \ln 7 - \ln 5 = 0.
\]
Thus, the numerator behaves as \( x^2 \) and requires a second-order approximation.
Step 3: Approximate the Denominator
For small \( x \),
\[
e^x - e^{-x} \approx 2x.
\]
Also, using \( \ln(1 - 3x) \approx -3x \), the denominator simplifies as:
\[
% Option
(2x)(-3x) = -6x^2.
\]
Step 4: Compute the Limit
Since the numerator's second-order term is:
\[
(1 - 7^x)(1 - 5^x) \approx (\ln 7 \cdot x)(\ln 5 \cdot x) = x^2 \ln 7 \ln 5,
\]
we substitute this into the fraction:
\[
L = \lim_{x \to 0} \frac{x^2 \ln 7 \ln 5}{-6x^2}.
\]
Canceling \( x^2 \), we obtain:
\[
L = \frac{\ln 7 \ln 5}{-6}.
\]
Step 5: Matching with the Options
The calculated limit is \( \frac{\ln 5 \cdot \ln 7}{-6} \), which matches option (D).
Final Answer: The limit evaluates to (D) \( \frac{\ln(5) \cdot \ln(7)}{-6} \).