We are asked to evaluate the integral:
\[
I = \int \frac{2}{2 - 3x} \, dx.
\]
To solve this, perform the substitution:
\[
u = 2 - 3x, \quad du = -3dx.
\]
So,
\[
dx = -\frac{du}{3}.
\]
Substitute into the integral:
\[
I = \int \frac{2}{u} \cdot \left( -\frac{du}{3} \right) = -\frac{2}{3} \int \frac{1}{u} \, du.
\]
Now, the integral of \(\frac{1}{u}\) is \(\ln |u|\), so we get:
\[
I = -\frac{2}{3} \ln |u| + c.
\]
Substitute \(u = 2 - 3x\) back:
\[
I = -\frac{2}{3} \ln |2 - 3x| + c.
\]
Thus, the correct answer is \( (C) \).