Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \]
Consider: \[ f(x) = \frac{x \sin^3 x}{4 - \cos^2 x} \] Examine its parity by replacing \( x \to -x \): \[ f(-x) = \frac{-x \cdot \sin^3(-x)}{4 - \cos^2(-x)} = \frac{-x \cdot (-\sin x)^3}{4 - \cos^2 x} = \frac{-x \cdot (-\sin^3 x)}{4 - \cos^2 x} = \frac{x \sin^3 x}{4 - \cos^2 x} = -f(x) \] So \( f(x) \) is an **odd function**.
For any odd function \( f(x) \), the integral over symmetric limits about zero is: \[ \int_{-a}^{a} f(x) \, dx = 0 \] Hence: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} \, dx = 0 \]
You might have seen a result like: \[ I = 2\pi \left(1 - \frac{3}{4} \log 3\right) \] But this applies to **different** symmetric integrals that involve **even functions** or shift-symmetric expressions. In our case, the integrand is **odd** due to the factor \( x \sin^3 x \), hence: \[ I = -I \Rightarrow I = 0 \] No computation is required beyond parity analysis.
\( \boxed{0} \)
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]