Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \]
Consider: \[ f(x) = \frac{x \sin^3 x}{4 - \cos^2 x} \] Examine its parity by replacing \( x \to -x \): \[ f(-x) = \frac{-x \cdot \sin^3(-x)}{4 - \cos^2(-x)} = \frac{-x \cdot (-\sin x)^3}{4 - \cos^2 x} = \frac{-x \cdot (-\sin^3 x)}{4 - \cos^2 x} = \frac{x \sin^3 x}{4 - \cos^2 x} = -f(x) \] So \( f(x) \) is an **odd function**.
For any odd function \( f(x) \), the integral over symmetric limits about zero is: \[ \int_{-a}^{a} f(x) \, dx = 0 \] Hence: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} \, dx = 0 \]
You might have seen a result like: \[ I = 2\pi \left(1 - \frac{3}{4} \log 3\right) \] But this applies to **different** symmetric integrals that involve **even functions** or shift-symmetric expressions. In our case, the integrand is **odd** due to the factor \( x \sin^3 x \), hence: \[ I = -I \Rightarrow I = 0 \] No computation is required beyond parity analysis.
\( \boxed{0} \)
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is:
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
The general solution of the differential equation \[ (x + y)y \,dx + (y - x)x \,dy = 0 \] is:
Evaluate the integral: \[ \int \frac{2x^2 - 3}{(x^2 - 4)(x^2 + 1)} \,dx = A \tan^{-1} x + B \log(x - 2) + C \log(x + 2) \] Given that, \[ 64A + 7B - 5C = ? \]
If \( x, y \) are two positive integers such that \( x + y = 20 \) and the maximum value of \( x^3 y \) is \( k \) at \( x = a, y = \beta \), then \( \frac{k}{\alpha^2 \beta^2} = ? \)
If the function f(x) = \(\sqrt{x^2 - 4}\) satisfies the Lagrange’s Mean Value Theorem on \([2, 4]\), then the value of \( C \) is}