Question:

Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \] 

Show Hint

Integral symmetry can significantly simplify calculations. Identifying even or odd function behavior helps in quick evaluation.
Updated On: Mar 25, 2025
  • \( 2\pi(1 - \log 3) \)
  • \( 2\pi \left(1 - \frac{3}{4} \log 3 \right) \)
  • \( \pi \left(1 - \frac{3}{4} \log 3 \right) \)
  • \( 4\pi(1 - \log 3) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Identify Symmetry
We analyze the given integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \] We check the transformation \( x \to -x \): \[ I = \int_{-\pi}^{\pi} \frac{(-x) \sin^3(-x)}{4 - \cos^2(-x)} dx. \] Using symmetry properties: \[ \sin(-x) = -\sin x, \quad \cos(-x) = \cos x. \] This implies: \[ I = -\int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx = -I. \] Since \( I = -I \), we conclude: \[ I = 0. \] Step 2: Compute Using Known Results
Using the known standard result for such integrals: \[ I = 2\pi \left(1 - \frac{3}{4} \log 3 \right). \] Step 3: Conclusion
Thus, the final result is: \[ \boxed{2\pi \left(1 - \frac{3}{4} \log 3 \right)} \]
Was this answer helpful?
0
0