Using the substitution \( t = a \sinh u \), we rewrite:
\[
dt = a \cosh u \, du
\]
Substituting and simplifying, integrating step by step:
\[
I = \int_0^x \frac{t^2}{\sqrt{a^2 + t^2}} dt = \frac{x}{2} \sqrt{a^2 + x^2} - \frac{a^2}{2} \operatorname{Sinh}^{-1} \frac{x}{a}
\]
Thus, the correct answer is:
\[
\frac{x}{2} \sqrt{a^2 + x^2} - \frac{a^2}{2} \operatorname{Sinh}^{-1} \frac{x}{a}
\]