Step 1: Expressing the integral. We need to evaluate the integral: \[ I = \int_{0}^{\frac{\pi}{2}} (\sqrt{\tan x} + \sqrt{\cot x}) \, dx \] We will split the integral into two parts: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{\tan x} \, dx + \int_{0}^{\frac{\pi}{2}} \sqrt{\cot x} \, dx \]
Step 2: Evaluating the first integral. Consider the integral \( \int_{0}^{\frac{\pi}{2}} \sqrt{\tan x} \, dx \). By the substitution \( u = \frac{\pi}{2} - x \), we have \( du = -dx \) and \( \tan \left( \frac{\pi}{2} - u \right) = \cot u \). This gives: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{\tan x} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{\cot u} \, du \] Thus, both integrals \( \int_{0}^{\frac{\pi}{2}} \sqrt{\tan x} \, dx \) and \( \int_{0}^{\frac{\pi}{2}} \sqrt{\cot x} \, dx \) are equal.
Step 3: Simplifying the result. Therefore, we can write: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \sqrt{\tan x} \, dx \] Using known integral results, we know that: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{\tan x} \, dx = \frac{\pi}{2} \sqrt{2} \] Thus: \[ I = 2 \times \frac{\pi}{2} \sqrt{2} = \pi \sqrt{2} \]
Consider a curve \( y = y(x) \) in the first quadrant as shown in the figure. Let the area \( A_1 \) be twice the area \( A_2 \). The normal to the curve perpendicular to the line \[ 2x - 12y = 15 \] does NOT pass through which point?