Question:

Evaluate \( \sin 210^\circ \cdot \cos 240^\circ \cdot \tan 150^\circ \):

Show Hint

Remember the signs of trigonometric functions in different quadrants: - In Quadrant I: all positive. - In Quadrant II: sine is positive, others negative. - In Quadrant III: tangent is positive, others negative. - In Quadrant IV: cosine is positive, others negative.
Updated On: Jun 9, 2025
  • \( \dfrac{-1}{4\sqrt{3}} \)
  • \( \dfrac{1}{2\sqrt{3}} \)
  • \( \dfrac{-1}{2\sqrt{3}} \)
  • \( \dfrac{1}{4\sqrt{3}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We need to evaluate \( \sin 210^\circ \cdot \cos 240^\circ \cdot \tan 150^\circ \). Step 1:
\( \sin 210^\circ = -\dfrac{1}{2} \) because 210° lies in the third quadrant.

Step 2:
\( \cos 240^\circ = -\dfrac{1}{2} \) because 240° lies in the third quadrant.

Step 3:
\( \tan 150^\circ = -\dfrac{1}{\sqrt{3}} \) because 150° lies in the second quadrant. \[ \sin 210^\circ \cdot \cos 240^\circ \cdot \tan 150^\circ = \left(-\dfrac{1}{2}\right) \cdot \left(-\dfrac{1}{2}\right) \cdot \left(-\dfrac{1}{\sqrt{3}}\right) = \dfrac{-1}{4\sqrt{3}} \]
Was this answer helpful?
0
0

Top Questions on Trigonometry

View More Questions