We use integration by parts. Let:
\[
u = \tan^{-1}{x}, \quad dv = x \, dx
\]
Then:
\[
du = \frac{1}{1+x^2} \, dx, \quad v = \frac{x^2}{2}
\]
Step 1: Apply the integration by parts formula:
\[
\int u \, dv = uv - \int v \, du
\]
Step 2: Substitute:
\[
\int x \tan^{-1}{x} \, dx = \frac{x^2}{2} \tan^{-1}{x} - \int \frac{x^2}{2} \cdot \frac{1}{1+x^2} \, dx
\]
Step 3: Simplify the second integral:
\[
\int \frac{x^2}{2(1+x^2)} \, dx = \int \frac{1}{2} \, dx = \frac{x}{2}
\]
Step 4: Final result:
\[
\int x \tan^{-1}{x} \, dx = \frac{x^2}{2} \tan^{-1}{x} - \frac{x}{2} + C
\]
Thus, the integral is:
\[
\boxed{\frac{x^2}{2} \tan^{-1}{x} - \frac{x}{2} + C}
\]