To solve \( \int x e^{x^2} \, dx \), we use the substitution method.
Let: \[ u = x^2 \quad {so} \quad du = 2x \, dx \] Thus: \[ \frac{du}{2} = x \, dx \] The integral becomes: \[ \int x e^{x^2} \, dx = \frac{1}{2} \int e^u \, du = \frac{e^{u}}{2} = \frac{e^{x^2}}{2} + C \]