Question:

Evaluate \( \int x e^{x^2} \, dx \):

Show Hint

For integrals like \( \int x e^{x^2} \, dx \), try using substitution to simplify the integrand.
Updated On: Mar 10, 2025
  • \( \frac{e^{x^2}}{2} \)
  • \( \frac{e^{1 - e^2}}{2} \)
  • \( \frac{e^{x^2 + 1}}{2} \)
  • \( \frac{e^{x^2 + 1}}{2} \)
  • \( \frac{e^{x^2 - 1}}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To solve \( \int x e^{x^2} \, dx \), we use the substitution method. 
Let: \[ u = x^2 \quad {so} \quad du = 2x \, dx \] Thus: \[ \frac{du}{2} = x \, dx \] The integral becomes: \[ \int x e^{x^2} \, dx = \frac{1}{2} \int e^u \, du = \frac{e^{u}}{2} = \frac{e^{x^2}}{2} + C \]

Was this answer helpful?
0
0