Step 1: Use substitution.
Let \( u = x^{10} \). Then,
\[
\frac{du}{dx} = 10x^9 $\Rightarrow$ dx = \frac{du}{10x^9}
\]
Step 2: Rewrite the integral.
Substituting into the integral:
\[
\int x^9 \cdot \sec^2(x^{10}) \, dx = \int \sec^2(u) \cdot \frac{du}{10}
\]
\[
= \frac{1}{10} \int \sec^2(u) \, du
\]
Step 3: Integrate.
The integral of \( \sec^2(u) \) is \( \tan(u) \), so:
\[
\frac{1}{10} \int \sec^2(u) \, du = \frac{1}{10} \tan(u) + C
\]
Step 4: Substitute back for \( u \).
Since \( u = x^{10} \), the final answer is:
\[
\frac{1}{10} \tan(x^{10}) + C
\]
Final Answer: \[ \boxed{\frac{1}{10} \tan(x^{10}) + C} \]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :