Question:

Evaluate \[ \int \left( 27e^{9x} + e^{12x} \right)^{1/3} dx \]

Show Hint

For integrals of complicated functions, use substitution to simplify and evaluate the integral.
Updated On: Jan 12, 2026
  • \( \frac{1}{4} (27e^{9x} + e^{3x})^3 + C \)
  • \( \frac{1}{4} (27e^{9x} + e^{3x})^2 + C \)
  • \( \frac{1}{3} (27e^{9x} + e^{3x})^4 + C \)
  • \( \frac{1}{4} (27e^{9x} + e^{3x})^4 + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Using substitution and integration techniques, we simplify the integral and find the result as \( \frac{1}{4} (27e^{9x} + e^{3x})^4 + C \).
Final Answer: \[ \boxed{\frac{1}{4} (27e^{9x} + e^{3x})^4 + C} \]
Was this answer helpful?
0
0