Question:

Evaluate \[ \int \frac{x^2 + 4}{x^4 + 16} \, dx \]

Show Hint

Use appropriate substitutions to simplify integrals and find their solutions.
Updated On: Jan 6, 2026
  • \( \frac{1}{2\sqrt{2}} \tan^{-1} \left( \frac{x^2 - 4}{2\sqrt{2}} \right) + c \)
  • \( \frac{1}{2\sqrt{2}} \tan^{-1} \left( \frac{x^2 - 4}{2\sqrt{2}} \right) + c \)
  • \( \frac{1}{2\sqrt{2}} \tan^{-1} \left( \frac{x^2 - 4}{x^4} \right) + c \)
  • None of the above
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Solve the integral.
Use the substitution \( u = x^2 + 4 \) to solve the integral.
Step 2: Conclusion.
Thus, the solution to the integral is \( \frac{1}{2\sqrt{2}} \tan^{-1} \left( \frac{x^2 - 4}{2\sqrt{2}} \right) + c \).
Final Answer: \[ \boxed{A} \]
Was this answer helpful?
0
0