Step 1: Simplify the integrand.
The integrand is in the form \( \frac{1}{a^2 - x^2} \), which is a standard form for integration. We use the formula:
\[
\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C
\]
Here, \( a^2 = 25 \), so \( a = 5 \).
Step 2: Apply the formula.
Substitute \( a = 5 \) and \( x \) into the standard formula:
\[
\int \frac{dx}{25 - 9x^2} = \frac{1}{2 \cdot 5} \ln \left| \frac{5 + 3x}{5 - 3x} \right| + C
\]
\[
= \frac{1}{10} \ln \left| \frac{5 + 3x}{5 - 3x} \right| + C
\]
Final Answer: \[ \boxed{\frac{1}{10} \ln \left| \frac{5 + 3x}{5 - 3x} \right| + C} \]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :