Step 1: Analyze the symmetry of the integrand.
The function to integrate is:
\[
f(x) = \sqrt{\frac{2 - x}{2 + x}}.
\]
To check for symmetry, replace \( x \) with \( -x \):
\[
f(-x) = \sqrt{\frac{2 - (-x)}{2 + (-x)}} = \sqrt{\frac{2 + x}{2 - x}}.
\]
We observe that:
\[
f(-x) = \frac{1}{f(x)}.
\]
Since \( f(-x) \neq f(x) \), the function is not symmetric, and we need to proceed with a direct approach to evaluate the integral.
Step 2: Substitute to simplify the integrand.
We begin by making a substitution to simplify the expression:
\[
x = 2 \sin \theta, \quad dx = 2 \cos \theta \, d\theta.
\]
The limits change accordingly:
- When \( x = -2 \), \( \theta = -\frac{\pi}{2} \).
- When \( x = 2 \), \( \theta = \frac{\pi}{2} \).
Substituting into the integrand:
\[
\sqrt{\frac{2 - x}{2 + x}} = \sqrt{\frac{2 - 2 \sin \theta}{2 + 2 \sin \theta}} = \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}}.
\]
Thus, the integral becomes:
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} \cdot 2 \cos \theta \, d\theta.
\]
Step 3: Simplify using trigonometric identities.
We use the identity:
\[
\frac{1 - \sin \theta}{1 + \sin \theta} = \tan^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right).
\]
Substituting this into the integral:
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \cdot \cos \theta \, d\theta.
\]
Using symmetry properties and trigonometric transformations, the integral simplifies further (details omitted for brevity).
Step 4: Evaluate the integral.
The value of the integral is:
\[
I = 2\pi.
\]
Conclusion:
The final value of the integral is:
\[
\boxed{2\pi}.
\]