1. Simplify the denominator:
Use the identity:
\[
\sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right).
\]
Thus:
\[
\frac{1}{\sin x + \cos x} = \frac{1}{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}.
\]
2. Rewrite the integral:
\[
\int_{0}^{\pi/4} \frac{1}{\sin x + \cos x} \, dx = \frac{1}{\sqrt{2}} \int_{0}^{\pi/4} \csc\left(x + \frac{\pi}{4}\right) \, dx.
\]
3. Substitute:
Let \( u = x + \frac{\pi}{4} \), so \( du = dx \). Change the limits:
\[
u = \frac{\pi}{4} \to \frac{\pi}{2}, \quad u = 0 \to \frac{\pi}{4}.
\]
The integral becomes:
\[
\frac{1}{\sqrt{2}} \int_{\pi/4}^{\pi/2} \csc u \, du.
\]
4. Integrate \( \csc u \):
\[
\int \csc u \, du = \ln|\csc u - \cot u|.
\]
5. Evaluate at the limits:
\[
\frac{1}{\sqrt{2}} \left[\ln|\csc(\pi/2) - \cot(\pi/2)| - \ln|\csc(\pi/4) - \cot(\pi/4)|\right].
\]
Substitute values:
\[
\csc(\pi/2) = 1, \, \cot(\pi/2) = 0, \, \csc(\pi/4) = \sqrt{2}, \, \cot(\pi/4) = 1.
\]
Simplify:
\[
\ln|\csc(\pi/2) - \cot(\pi/2)| = \ln(1), \quad \ln|\csc(\pi/4) - \cot(\pi/4)| = \ln(\sqrt{2} - 1).
\]
Final result:
\[
\frac{1}{\sqrt{2}} \left[0 - \ln(\sqrt{2} - 1)\right] = -\frac{\ln(\sqrt{2} - 1)}{\sqrt{2}}.
\]
Final Answer:
\[
\boxed{-\frac{\ln(\sqrt{2} - 1)}{\sqrt{2}}.}
\]