Question:

Evaluate: \[ \int_0^{\frac{\pi}{2}} \sqrt{1 - \cos{4x}} \, dx \]

Show Hint

To simplify integrals involving trigonometric functions, use known trigonometric identities and properties of integrals.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

To solve this integral, we use the identity for \( 1 - \cos{4x} \): \[ 1 - \cos{4x} = 2\sin^2{2x} \] Thus, the integral becomes: \[ \int_0^{\frac{\pi}{2}} \sqrt{2\sin^2{2x}} \, dx = \sqrt{2} \int_0^{\frac{\pi}{2}} |\sin{2x}| \, dx \] Since \( \sin{2x} \) is positive in the interval \( [0, \frac{\pi}{2}] \), we can remove the absolute value: \[ \sqrt{2} \int_0^{\frac{\pi}{2}} \sin{2x} \, dx \] Now, integrate: \[ \int \sin{2x} \, dx = -\frac{1}{2} \cos{2x} \] Thus, the integral becomes: \[ \sqrt{2} \left[ -\frac{1}{2} \cos{2x} \right]_0^{\frac{\pi}{2}} = \sqrt{2} \left( -\frac{1}{2} \left( \cos{\pi} - \cos{0} \right) \right) \] Substitute the values of \( \cos{\pi} \) and \( \cos{0} \): \[ \sqrt{2} \left( -\frac{1}{2} \left( -1 - 1 \right) \right) = \sqrt{2} \left( \frac{1}{2} \times 2 \right) = \sqrt{2} \] Thus, the value of the integral is: \[ \boxed{\sqrt{2}} \]
Was this answer helpful?
0
0