At room temperature, T = 27°C = 300 K
Average thermal energy \(=\frac{3}{2}\,KT\)
Where k is Boltzmann constant = 1.38 × 10 -23 m2 kg s-2 K-1
∴ \(\frac{3}{2}\,KT=\frac{3}{2}×1.30×10^{-38}×300\)
= 6.21 × 10–21J
Hence, the average thermal energy of a helium atom at room temperature (27°C) is 6.21×10–21 J.
On the surface of the sun, T = 6000 K
Average thermal energy \(=\frac{3}{2}\,KT\)
\(\frac{3}{2}×1.30×10^{-38}×6000\)
= 1.241 × 10–19 J
Hence, the average thermal energy of a helium atom on the surface of the sun is 1.241 × 10–19 J.
At temperature, T = 107 K
Average thermal energy \(=\frac{3}{2}\,KT\)
\(\frac{3}{2}×1.38×10^{-23}×10^7\)
= 2.07 × 10–16 J
Hence, the average thermal energy of a helium atom at the core of a star is 2.07 × 10-16J.
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?