Concept:
Escape velocity from a planet is:
\[
v_e=\sqrt{\frac{2GM}{R}}
\]
For a planet of uniform density \(\rho\),
\[
M=\frac{4}{3}\pi R^3\rho
\]
Hence,
\[
v_e \propto R\sqrt{\rho}
\]
Step 1: Write the proportionality relation.
\[
\frac{v_{e2}}{v_{e1}}
= \frac{R_2\sqrt{\rho_2}}{R_1\sqrt{\rho_1}}
\]
Step 2: Substitute the given values.
\[
R_2=\frac{R}{10},\quad \rho_2=\frac{\rho}{10}
\]
\[
\frac{v_{e2}}{10\,\text{km s}^{-1}}
= \frac{\frac{R}{10}\sqrt{\frac{\rho}{10}}}{R\sqrt{\rho}}
= \frac{1}{10\sqrt{10}}
\]
Step 3: Find the new escape velocity.
\[
v_{e2}=\frac{10}{10\sqrt{10}}\,\text{km s}^{-1}
= \frac{1}{\sqrt{10}}\,\text{km s}^{-1}
\]
Convert to m/s:
\[
v_{e2}=\frac{1000}{\sqrt{10}}\,\text{m s}^{-1}
=100\sqrt{10}\,\text{m s}^{-1}
\]
\[
\boxed{v_{e2}=100\sqrt{10}\,\text{m s}^{-1}}
\]