The given reaction is :
\(N_2(g) + 3H_2(g) ↔ 2NH_3(g)\)
At a particular time : 3.0 mol L-1 2.0 mol L-1 0.5 mol L-1
Now, we know that,
\(Q_c = \frac {[NH_3]^2}{[N_2][H_2]^3}\)
\(Q_c= \frac {(0.5)^2}{(3.0)(2.0)^3}\)
\(Q_c= 0.0104\)
It is given that \(K_c = 0.061\).
Since \(Q_c ≠ K_c\) , the reaction is not at equilibrium.
Since \(Q_c < K_c\), the reaction will proceed in the forward direction to reach equilibrium.
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
Give reasons for the following.
(i) King Tut’s body has been subjected to repeated scrutiny.
(ii) Howard Carter’s investigation was resented.
(iii) Carter had to chisel away the solidified resins to raise the king’s remains.
(iv) Tut’s body was buried along with gilded treasures.
(v) The boy king changed his name from Tutankhaten to Tutankhamun.
Draw the Lewis structures for the following molecules and ions: \(H_2S\), \(SiCl_4\), \(BeF_2\), \(CO_3^{2-}\) , \(HCOOH\)
| λ (nm) | 500 | 450 | 400 |
|---|---|---|---|
| v × 10–5(cm s–1) | 2.55 | 4.35 | 5.35 |
The equilibrium constant may be defined as the ratio between the product of the molar concentrations of the products to that of the product of the molar concentrations of the reactants with each concentration term raised to a power equal to the stoichiometric coefficient in the balanced chemical reaction.
The equilibrium constant at a given temperature is the ratio of the rate constant of forwarding and backward reactions.
Kequ = kf/kb = [C]c [D]d/[A]a [B]b = Kc
where Kc, indicates the equilibrium constant measured in moles per litre.
For reactions involving gases: The equilibrium constant formula, in terms of partial pressure will be:
Kequ = kf/kb = [[pC]c [pD]d]/[[pA]a [pB]b] = Kp
Where Kp indicates the equilibrium constant formula in terms of partial pressures.
Medium Kc/Kp values indicate optimum product formation.
The equilibrium constant is the ratio of the concentrations raised to the stoichiometric coefficients. Therefore, the unit of the equilibrium constant = [Mole L-1]△n.
where, ∆n = sum of stoichiometric coefficients of products – a sum of stoichiometric coefficients of reactants.