Using Einstein’s photoelectric equation:
\[
K_{\max} = h\nu - \phi
\]
where:
- \( h = 6.63 \times 10^{-34} \) Js (Planck’s constant)
- \( c = 3 \times 10^8 \) m/s (Speed of light)
- \( \lambda = 2000 \) Å = \( 2 \times 10^{-7} \) m
- \( \phi = 4.2 \) eV (Work function)
First, find the energy of the incident photon:
\[
E = \frac{hc}{\lambda}
\]
\[
= \frac{(6.63 \times 10^{-34}) (3 \times 10^8)}{2 \times 10^{-7}}
\]
\[
= 9.945 \times 10^{-19} J
\]
Convert to eV:
\[
E = \frac{9.945 \times 10^{-19}}{1.6 \times 10^{-19}} = 6.22 \text{ eV}
\]
Now, find the kinetic energy:
\[
K_{\max} = 6.22 - 4.2 = 2.02 \text{ eV}
\]
Convert to joules:
\[
K_{\max} = 2.02 \times 1.6 \times 10^{-19} = 3.23 \times 10^{-19} \text{ J}
\]
Using kinetic energy formula:
\[
K = \frac{1}{2} m v^2
\]
where \( m = 9.1 \times 10^{-31} \) kg (mass of electron),
\[
v = \sqrt{\frac{2K}{m}}
\]
\[
= \sqrt{\frac{2 \times 3.23 \times 10^{-19}}{9.1 \times 10^{-31}}}
\]
\[
= \sqrt{7.1 \times 10^{11}}
\]
\[
= 8.4 \times 10^5 \text{ m/s}
\]
Thus, the correct answer is \( 8.4 \times 10^5 \) ms\(^{-1}\).