Question:

Energy required to remove an electron from an aluminium surface is 4.2 eV. If light of wavelength 2000 Å falls on the surface, the velocity of the fastest electron ejected from the surface will be

Show Hint

To find the maximum velocity of an ejected electron, use Einstein’s photoelectric equation and the kinetic energy formula.
Updated On: Mar 19, 2025
  • \( 8.4 \times 10^5 \) ms\(^{-1}\)
  • \( 7.4 \times 10^5 \) ms\(^{-1}\)
  • \( 6.4 \times 10^5 \) ms\(^{-1}\)
  • \( 8.4 \times 10^6 \) ms\(^{-1}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Using Einstein’s photoelectric equation: \[ K_{\max} = h\nu - \phi \] where: - \( h = 6.63 \times 10^{-34} \) Js (Planck’s constant) - \( c = 3 \times 10^8 \) m/s (Speed of light) - \( \lambda = 2000 \) Å = \( 2 \times 10^{-7} \) m - \( \phi = 4.2 \) eV (Work function) First, find the energy of the incident photon: \[ E = \frac{hc}{\lambda} \] \[ = \frac{(6.63 \times 10^{-34}) (3 \times 10^8)}{2 \times 10^{-7}} \] \[ = 9.945 \times 10^{-19} J \] Convert to eV: \[ E = \frac{9.945 \times 10^{-19}}{1.6 \times 10^{-19}} = 6.22 \text{ eV} \] Now, find the kinetic energy: \[ K_{\max} = 6.22 - 4.2 = 2.02 \text{ eV} \] Convert to joules: \[ K_{\max} = 2.02 \times 1.6 \times 10^{-19} = 3.23 \times 10^{-19} \text{ J} \] Using kinetic energy formula: \[ K = \frac{1}{2} m v^2 \] where \( m = 9.1 \times 10^{-31} \) kg (mass of electron), \[ v = \sqrt{\frac{2K}{m}} \] \[ = \sqrt{\frac{2 \times 3.23 \times 10^{-19}}{9.1 \times 10^{-31}}} \] \[ = \sqrt{7.1 \times 10^{11}} \] \[ = 8.4 \times 10^5 \text{ m/s} \] Thus, the correct answer is \( 8.4 \times 10^5 \) ms\(^{-1}\).
Was this answer helpful?
0
0

Top Questions on Photoelectric Effect

View More Questions