The rod has length $AB = 2$ m and makes an angle of $60^\circ$ with the horizontal.
Point $B$ moves horizontally with velocity:
\[
\vec{v}_B = 1\,\mathbf{i}
\]
The relative velocity of point $A$ with respect to point $B$ is given by the rigid-body motion relation:
\[
\vec{v}_{A/B} = \vec{\omega} \times \vec{r}_{A/B}
\]
Here, $\omega = 2$ rad/s (counterclockwise).
The position vector of $A$ from $B$ is:
\[
\vec{r}_{A/B} = 2(\cos60^\circ\,\mathbf{i} + \sin60^\circ\,\mathbf{j})
= 2\left(\tfrac{1}{2}\mathbf{i} + \tfrac{\sqrt{3}}{2}\mathbf{j}\right)
= \mathbf{i} + \sqrt{3}\mathbf{j}
\]
Now compute the cross product:
\[
\vec{v}_{A/B} = \omega \times r_{A/B}
= 2(-\sqrt{3}\mathbf{i} + 1\mathbf{j})
= -2\sqrt{3}\mathbf{i} + 2\mathbf{j}
\]
Finally, the velocity of point A is:
\[
\vec{v}_A = \vec{v}_B + \vec{v}_{A/B}
= 1\mathbf{i} + (-2\sqrt{3}\mathbf{i} + 2\mathbf{j})
\]
So,
\[
\vec{v}_A = (1 - 2\sqrt{3})\mathbf{i} + 2\mathbf{j}
\]