Step 1: Principal stresses formula.
The principal stresses are:
\[
\sigma_{1,2} = \frac{\sigma_{xx} + \sigma_{yy}}{2} \pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \sigma_{xy}^2}
\]
Step 2: Substitute values.
\[
\sigma_{avg} = \frac{800 + 0}{2} = 400
\]
\[
R = \sqrt{(400)^2 + (300)^2} = \sqrt{160000 + 90000} = \sqrt{250000} = 500
\]
\[
\sigma_1 = 400 + 500 = 900, \sigma_2 = 400 - 500 = -100
\]
Step 3: Maximum shear stress.
\[
\tau_{max} = \frac{\sigma_1 - \sigma_2}{2} = \frac{900 - (-100)}{2} = \frac{1000}{2} = 500
\]
Wait — note maximum shear is the radius of Mohr’s circle:
\[
\tau_{max} = R = 500 \, \text{MPa}
\]
But since the question asks among options, and correct calculation shows **500 MPa**, the right option is (A).
Final Answer:
\[
\boxed{500 \, \text{MPa}}
\]