We use the effectiveness equation for a heat exchanger in the counterflow configuration:
\[
\epsilon = \frac{\dot{Q}_{\text{actual}}}{\dot{Q}_{\text{max}}}
\]
Where:
- \( \dot{Q}_{\text{actual}} \) is the actual heat transferred,
- \( \dot{Q}_{\text{max}} \) is the maximum possible heat transfer.
The actual heat transfer rate \( \dot{Q}_{\text{actual}} \) can be calculated using the blood:
\[
\dot{Q}_{\text{actual}} = \dot{m}_\text{blood} \cdot c_\text{blood} \cdot (T_\text{inlet} - T_\text{outlet})
\]
Where:
- \( \dot{m}_\text{blood} = \rho_\text{blood} \cdot V_\text{blood} \),
- \( c_\text{blood} = 3740 \, \text{J/kg-K} \) is the specific heat of blood,
- \( T_\text{inlet} = 37^\circ \text{C} \), and \( T_\text{outlet} = 25^\circ \text{C} \) are the inlet and outlet temperatures of the blood.
First, convert the blood flow rate to kg/s:
\[
\dot{V}_\text{blood} = 5 \, \text{L/min} = \frac{5}{60} \, \text{L/s} = \frac{5}{60} \times 10^{-3} \, \text{m}^3/\text{s}
\]
Now, calculate the mass flow rate of blood:
\[
\dot{m}_\text{blood} = \rho_\text{blood} \cdot \dot{V}_\text{blood} = 1050 \, \text{kg/m}^3 \times \frac{5}{60} \times 10^{-3} \, \text{m}^3/\text{s} = 0.0875 \, \text{kg/s}.
\]
Now, calculate the actual heat transfer:
\[
\dot{Q}_{\text{actual}} = 0.0875 \, \text{kg/s} \times 3740 \, \text{J/kg-K} \times (37 - 25) = 0.0875 \times 3740 \times 12 = 3927 \, \text{W}.
\]
Next, calculate the maximum heat transfer rate \( \dot{Q}_{\text{max}} \) using the water:
\[
\dot{Q}_{\text{max}} = \dot{m}_\text{water} \cdot c_\text{water} \cdot (T_\text{outlet} - T_\text{inlet})
\]
Where:
- \( \dot{m}_\text{water} = \rho_\text{water} \cdot \dot{V}_\text{water} \),
- \( c_\text{water} = 4200 \, \text{J/kg-K} \) is the specific heat of water,
- \( T_\text{outlet} = 18^\circ \text{C} \), and \( T_\text{inlet} = 4^\circ \text{C} \).
First, calculate the mass flow rate of water:
\[
\dot{V}_\text{water} = \dot{V}_\text{blood} = \frac{5}{60} \times 10^{-3} \, \text{m}^3/\text{s},
\]
\[
\dot{m}_\text{water} = 1000 \, \text{kg/m}^3 \times \frac{5}{60} \times 10^{-3} = 0.0833 \, \text{kg/s}.
\]
Now, calculate the maximum heat transfer:
\[
\dot{Q}_{\text{max}} = 0.0833 \, \text{kg/s} \times 4200 \, \text{J/kg-K} \times (18 - 4) = 0.0833 \times 4200 \times 14 = 4884.12 \, \text{W}.
\]
Finally, calculate the effectiveness of the heat exchanger:
\[
\epsilon = \frac{\dot{Q}_{\text{actual}}}{\dot{Q}_{\text{max}}} = \frac{3927}{4884.12} \approx 0.40.
\]
Thus, the effectiveness of the heat exchanger is \( \boxed{0.40} \).