Consider that specific heat (0 to \(50~^\circ\mathrm{C}\)) of water, water vapour and air remains constant: \(4.48\), \(1.88\) and \(1.0~\mathrm{kJ/(kg\^\circ C)}\), respectively. Assuming the heat energy required to convert \(1~\mathrm{kg}\) of water to water vapour at \(0~^\circ\mathrm{C}\) is \(2000~\mathrm{kJ}\), the enthalpy (in kJ/kg dry air) of atmospheric air containing \(0.05~\mathrm{kg}\) water vapour per kg dry air at \(50~^\circ\mathrm{C}\) is ________. (rounded off to 1 decimal place)
In hot weather, a human body cools by evaporation of sweat. The amount of water that must evaporate to cool the body by \(1~^\circ\mathrm{C}\) is __________________________% of the body mass. (Round off to two decimal places)
[Given: latent heat of vaporization of water \(L_v=2.25\times10^6~\mathrm{J\,kg^{-1}}\); specific heat capacities of body and water \(c=4.2\times10^3~\mathrm{J\,kg^{-1}\,K^{-1}}\).]
One kg of dry air at \(15~^\circ\mathrm{C}\) is isothermally compressed to one–tenth of its initial volume. The work done on the system is ______________________________________ kJ. (Round off to the nearest integer) [Use the gas constant for dry air \(R=287~\mathrm{J\,kg^{-1}\,K^{-1}}\).]
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
The current passing through the battery in the given circuit, is:
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :