The Correct Answer is : 30
\(|m|=|\frac{v}{u}|=2\)
\(|v|=|2u|\)
n + 2n = 45
n = 15 cm
u = –15
v = 30
\(\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\)
\(\frac{1}{30}+\frac{1}{-15}=\frac{1}{f}\)
\(\frac{1-2}{30}=\frac{-1}{30}=\frac{1}{f}\)
\(⇒ f=30\ cm\)
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
A spherical mirror is a mirror which has been cut out of a spherical surface.
There are two kinds of spherical mirrors:

Concave mirrors are also called converging mirrors, because in these types of mirrors, light rays converge at a point after impact and reflect back from the reflective surface of the mirror.
The convex mirror has a reflective surface that is curved outward. Regardless of the distance between the subject and the mirrors, these mirrors are "always" virtual, upright and reduced.