The distance between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by:
\[
\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Substituting the given points:
\[
\text{Distance} = \sqrt{a^2 (\cos \beta - \cos \alpha)^2 + a^2 (\sin \beta - \sin \alpha)^2}
\]
Using the identity for the difference of cosines and sines:
\[
\text{Distance} = 2a \sin \left(\frac{\alpha - \beta}{2}\right)
\]
Thus, the correct answer is \(2a \sin \left(\frac{\alpha - \beta}{2}\right)\).