Step 1: Simplify inside the inverse sine.
\[
\frac{2x+2}{\sqrt{4x^2+8x+13}}
=
\frac{2(x+1)}{\sqrt{4(x+1)^2+9}}
\]
Step 2: Use standard identity.
We know:
\[
\sin^{-1}\left(\frac{u}{\sqrt{u^2+a^2}}\right)=\tan^{-1}\left(\frac{u}{a}\right)
\]
Here:
\[
u=2(x+1),\quad a=3
\]
So:
\[
\sin^{-1}\left(\frac{2(x+1)}{\sqrt{4(x+1)^2+9}}\right)=\tan^{-1}\left(\frac{2(x+1)}{3}\right)
\]
Hence integral becomes:
\[
\int \tan^{-1}\left(\frac{2x+2}{3}\right)dx
\]
Step 3: Use formula for \(\int \tan^{-1}(ax+b)\,dx\).
Standard result:
\[
\int \tan^{-1}(t)\,dx = x\tan^{-1}(t)-\frac{1}{2a}\ln(1+t^2)+C
\]
Here \(t=\frac{2x+2}{3}\), so \(dt/dx=2/3\).
Step 4: Apply final result.
We get:
\[
(x+1)\tan^{-1}\left(\frac{2x+2}{3}\right)-\frac{3}{4}\log\left(\frac{4x^2+8x+13}{9}\right)+c
\]
Final Answer:
\[
\boxed{(x+1)\tan^{-1}\left(\frac{2x+2}{3}\right)-\frac{3}{4}\log\left(\frac{4x^2+8x+13}{9}\right)+c}
\]