Step 1: Parametrize the given line.
The given equation of the line is:
\[
\frac{x - 1}{2} = -y = \frac{2z + 1}{6}.
\]
Let \( t \) be the parameter. From each equation, we solve for \( x \), \( y \), and \( z \):
\[
\frac{x - 1}{2} = t \quad \Rightarrow \quad x = 2t + 1,
\]
\[
-y = t \quad \Rightarrow \quad y = -t,
\]
\[
\frac{2z + 1}{6} = t \quad \Rightarrow \quad z = 3t - \frac{1}{2}.
\]
Step 2: Identify the direction ratios.
The direction ratios are the coefficients of \( t \) in the parametric equations:
\[
\text{Direction ratios} = 2, -1, 3.
\]
Step 3: Conclusion.
The direction ratios of the line are:
\[
\boxed{2, -1, 3}.
\]