We are asked to find the direction cosines of a vector that is perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \).
Step 1: Find the cross product of \( \mathbf{a} \) and \( \mathbf{b} \)
To find the direction cosines of a vector perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \), we first compute the cross product \( \mathbf{a} \times \mathbf{b} \).
Given:
\[
\mathbf{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \quad \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k}
\]
The cross product formula is:
\[
\mathbf{a} \times \mathbf{b} = \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k}
1 & 2 & 3
2 & -1 & 1 \end{matrix} \right|
\]
Using the determinant formula for the cross product:
\[
\mathbf{a} \times \mathbf{b} = \hat{i} \left( \begin{vmatrix} 2 & 3
-1 & 1 \end{vmatrix} \right) - \hat{j} \left( \begin{vmatrix} 1 & 3
2 & 1 \end{vmatrix} \right) + \hat{k} \left( \begin{vmatrix} 1 & 2
2 & -1 \end{vmatrix} \right)
\]
\[
= \hat{i} \left( (2)(1) - (3)(-1) \right) - \hat{j} \left( (1)(1) - (3)(2) \right) + \hat{k} \left( (1)(-1) - (2)(2) \right)
\]
\[
= \hat{i} \left( 2 + 3 \right) - \hat{j} \left( 1 - 6 \right) + \hat{k} \left( -1 - 4 \right)
\]
\[
= \hat{i}(5) - \hat{j}(-5) + \hat{k}(-5)
\]
\[
\mathbf{a} \times \mathbf{b} = 5\hat{i} + 5\hat{j} - 5\hat{k}
\]
Thus, the vector perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \) is \( \mathbf{a} \times \mathbf{b} = 5\hat{i} + 5\hat{j} - 5\hat{k} \).
Step 2: Find the magnitude of \( \mathbf{a} \times \mathbf{b} \)
The magnitude of the vector \( \mathbf{a} \times \mathbf{b} \) is:
\[
|\mathbf{a} \times \mathbf{b}| = \sqrt{(5)^2 + (5)^2 + (-5)^2} = \sqrt{25 + 25 + 25} = \sqrt{75} = 5\sqrt{3}
\]
Step 3: Find the direction cosines
The direction cosines of a vector are given by the components of the unit vector in the direction of \( \mathbf{a} \times \mathbf{b} \). The unit vector is:
\[
\hat{u} = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}
\]
Thus, the direction cosines are:
\[
\cos \alpha = \frac{5}{5\sqrt{3}} = \frac{1}{\sqrt{3}}, \quad \cos \beta = \frac{5}{5\sqrt{3}} = \frac{1}{\sqrt{3}}, \quad \cos \gamma = \frac{-5}{5\sqrt{3}} = \frac{-1}{\sqrt{3}}
\]
Hence, the direction cosines of the vector perpendicular to \( \mathbf{a} \) and \( \mathbf{b} \) are \( \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \).