Direct and Active State Participation (1950-1990):
- Industrial Policy Resolutions (IPR): The IPR of 1956 emphasized public sector dominance in industries like steel, energy, and heavy machinery. The state took responsibility for setting up industries that required heavy investment.
- Balanced Regional Development: The government actively set up industries in backward regions to reduce regional disparities.
- Infrastructure Development: State intervention was essential for creating infrastructure such as transport, power, and communication networks.
- Employment Generation and Social Equity: Industrial policies during this period aimed at providing employment and reducing income inequalities. Thus, the direct participation of the state was crucial for laying the foundation of India's industrial development during this period.
| Row | Statistical Model | Elasticity |
| 1 | \(y_t=β_1+β_2\frac{1}{x_t}\epsilon_t\) | \(-\frac{β_2}{x^2_t}\) |
| 2 | \(y_t=β_1-β_2\text{ln}(x_t)+\epsilon_t\) | \(-\frac{β_2}{x^2_t}\) |
| 3 | ln(yt) = β1 + β2 ln(xt) + εt | β2 |
| 4 | ln(yt) = β1 + β2xt + εt | β2xt |
| 5 | ln(yt) = β1 + β2 ln(xt) + εt | β2 exp(xt) |
| 6 | ln(yt) = β1 + β2xt + εt | \(β_2\frac{1}{\text{exp}(x_t)}\) |
Two players \( A \) and \( B \) are playing a game. Player \( A \) has two available actions \( a_1 \) and \( a_2 \). Player \( B \) has two available actions \( b_1 \) and \( b_2 \). The payoff matrix arising from their actions is presented below:

Let \( p \) be the probability that player \( A \) plays action \( a_1 \) in the mixed strategy Nash equilibrium of the game.
Then the value of p is (round off to one decimal place).
Eight students (P, Q, R, S, T, U, V, and W) are playing musical chairs. The figure indicates their order of position at the start of the game. They play the game by moving forward in a circle in the clockwise direction.
After the 1st round, the 4th student behind P leaves the game.
After the 2nd round, the 5th student behind Q leaves the game.
After the 3rd round, the 3rd student behind V leaves the game.
After the 4th round, the 4th student behind U leaves the game.
Who all are left in the game after the 4th round?

Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is: